SYNTHESIS OF POLYFUNCTIONALIZED ACYLSILANES VIA PROPENOYLTRIMETHYLSILANE.

A.Ricci, A-Degl'Innocent i, G.Borselli and G.Reginato

Centro C.N.R. Composti Eterociclici e loro Applicazioni, c/o Dipartimento di Chimica Organica delt'universita via G.Capponi 9, I-50121 Firenze, ITALY.

Summary: Propenoyttrimethylsilane Cl) reacts with silylated nucteophites to yield the fl-functionalised silyl enol ethers of acylsilanes. Further "in situ" reaction of these compounds affords an easy entry into the class of polyfunctionalised acylsitanes.

SiLyl enol **ethers of acylsilanes are gaining growing interest in the** chemical literature¹, and although several methods have been developed for their synthesis², none of them appears suitable for incorporating a functional group. Moreover some β -functionalized acylsilanes have been reported³, **but the synthetic method for their preparation is not general.**

As a part **of our Long standing and continuing interest in this field4 we wish now to report a novel, mild and high yielding synthesis of functionatised sityl enol ethers of acytsilanes, via the Michael addition of a variety of silylated nucleophites to a very reactive acylsilane, propenoyltrimethyl-** \sinh^{-5} (1).

Thus, as a typical example, upon stirring for 1 h PhSSiMe₃ with prope**noyltrimethylsilane Cl) at room temperature, it is possible to isolate in 98% yield 3-phenylthio-I-trimethylsilyloxy-l- trimethylsilyl propene (2d). The compounds obtained through this procedure are usually pure enough to undergo further reactions. The results are collected in Table 1.**

The reaction proceeds in the absence of any solvent, although it is possible to run it in ether or in THF, with stowing of the reaction rate. No catalyst was necessary, probably due to the high positive charge present at the carbon in the β -position.

Silyl enol ethers obtained through this Michael type addition to Cl) uere 95% pure E isomers, as evidenced by the NMR6 spectra of the crude material obtained from the reaction mixtures: this feature turns out to be a very interesting one since stereochemically pure enot derivatives have important applications in stereoselective syntheses of alicyclic molecules bearing 7 **multiple asymmetric centers** . **Interestingly the functionatization of Cl) with N3SiMe3 affords, to our knowledge, the first example of 1,4-Michael addition of this sitytated derivative, thus opening a new and easy access to p-azido ketones.**

Nucleophile	Product	Yield ^a %	$E:Z^b$		¹ H NMR(ppm)
Et_N-SiMe3	.SiMes EtzN OSIME ₃ 2a	98	95:5		0.28 (s, 9H), 0.32 (s, 9H), 1.18 (q, 6H). 2.70 (m, 4H), 3.2B (d, 2H), 4.50 (t, 1H).
HK (I2 _c su)	MesS1NH- SiMe, ÓSime₃ 50	$50\,{\rm c}$			
l−SiMe ₃	SiMe, OSiMes Sc.	90	95:5		0.20 (s, 9H), 0.31 (s, 9H), 4.58 (d, 2H) 5.28 (t, 1H), 7.1 (s, 2H), 7.6 (s, 1H).
PhS-SiMes	PhS .SiMe ₃ ÒSiMes 2d	98	94:6		0.18 (s, 9H), 0.31 (s, 9H), 3.58 (d, 2H) 5.17 (t, 1H), $7.10 - 7.25$ (m, 5H).
MeS-SiMe _s	MeS Sines OSiMe ₃ 2 _e	81	95:5		D. 20 (s, 9H), 0.31 (s, 9H), 2.07 (s, 3H), 3.18 (d, 2H), 5.18 (t, 1H).
Calident)	Me ₃ SiS~ SiMe s OSINes 2f	95	91:9	3.10 (d, 2H), 5.07 (t, 1H).	0.18 (s, 9H), 0.3 (s, 9H), 0.38 (s, 9H),
Br-SiMes	Bг. SiMes OSiMes 2g	95	95:5	5.50 (t, 1H).	0.12 (s, 9H), 0.30 (s, 9H), 4.04 (d, 2H).
N _u -SiMe ₃	SiMes Ν. OSIMe₃ 2 _h	98	94: 6	$5.58(t.1H)$.	0.15 (s, 9H), 0.27 (s, 9H), 3.90 (d, 2H).
PPhs/MesSiCl	Php SiMa ₃ OSIMes 57	96	94: 6		0.15 (s, 9H), 0.27 (s, 9H), 4.73 (dd, 2H) 5.62 (m, iH), 7.55-1.70 (m, i5H).

Table 1. Functionalized Silyl Enol Ethers of Acylsilanes.

^aYields determined on the NMR spectrum of the crude product.^b E:Z ratio determined by NMR on the chemical shifts of the vinylic protons. CDetermined by GC/MS analysis.

By acidic hydrolysis of these new silylated enol ethers, it is possible to obtain in high yields acylsilanes variously functionalised at the β -position, with great versatility in organic synthesis, since acylsilanes are readily convertible to the corresponding aldehydes 8 and acids⁹.

A further synthetic potential of compounds (2), stems from their capability to undergo the typical reactions of silyl enol ethers with electrophiles

other than H⁺. To exploit this last possibility, preliminary experiments based on a one pot double functionalization of (1) were performed.

As shown by the results in Table 2, the silyl enol ethers of acylsilanes, once generated, react "in situ", in a regiospecific fashion, spontaneously or

Table 2. Reactions of silyl enol ethers of acylsilanes toward Electrophiles.

a
All the reactions were performed "in situ". Dpetermined by GC/MS analysis or by NMR of the crude material.

under the catalytic effect of BF₃.Et₂0 with some representative electrophiles, leading to acysilanes with different functional groups at the α and B -positions 10 .

Due to its inherent interest and wide applications in synthesis, this reactional behaviour makes compound Cl) a synthetic equivalent of the poli-

functional synthon (6). This is now being actively investigated in our laboratories.

REFERENCES AND NOTES

- **1. T.**Sato, M.Arai and I.Kuwajima, <u>J. Am. Chem. Soc., 99</u>, 5827 (1977); T.Sa[.] to, T.Abe and I.Kuwajima, Tetrahedron Lett., 19,259 (1978).
- 2. I.Kuwajima, M.Kato and T.Sato, <u>J.Am.Chem.Soc.</u>, <u>99</u>, 4181 (1977); I.Kuwaj ma, M.Kato and T.Sato, J.Chem.Soc. Chem. Commun., 478 (1978); S.Murai, I.Ryu, J.Iriguchi and N.Sinoda, J.Am.Chem.Soc., 106, 2440 (1984).
- **3. D.I.Gasking and G.H.Whitham, J.Chem.Soc. Perkin I -~___- _' 409, (1985).**
- **4. A.Degl'Innocenti, S-Pike, D.R.M.WaLton, G.Seconi, A.Ricci and M.Fiorenza,** J.Chem.Soc. Chem.Commun., 1201 (1980); A.Ricci, A.Degl'Innocenti, S.Chi**michi, M.Fiorenza, G.Rossini and H.J.Bestmann, J.Org.Chem., 50, 130 (1985); A.Degl'Innocenti, A.Ricci,G.Seconi, G.Pirazzini and D.R.M.Walton, Tetrahedron Lett., 21, 3927 (1980); A.Ricci, M.Fiorenza, A.Degl'Innocen**ti, G.Seconi, P.Dembech, K.Witzgall and H.J.Bestmann, Angew. Chem. Int. Ed. Engl., 24, 1068 (1985); A.Ricci, A.Degl'Innocenti, A.Mordini, G.Reginato and V.Colotta, Gazz. Chim. It., in press.
- 5. H.J.Reich, M.J.Kelly, R.E.Olson and R.C.Holtan, <u>Tetrahedron</u>, <u>37</u>, 949 **(1983).**
- **6. C.H.Heathcock, C.T.Buse, W.A.KLeschick, M.C.Pirrung, J.E.Sohn and J.Lampe, J.Org.Chem., 45, 1066 (1980); S.Masamune, W.Choy, F.A.Kerdesky and B.Imperiali, J.Am.Chem.Soc 103, ------A -- 1566 (1981); D.A.Evans, J.Bartroli,** T.L.Shih, J.Am.Chem.Soc., 103, 2127 (1981).
- **7. C.H.Heathcock, C.T.Buse, W.A.Kleschick, M.C.Pirrung, J.E.Sohn and J.Lampe, J.Org.Chem,, 45, 1066 (1980); H.O.House, L.J.Czuba, M.Gall and M.D.** Olmstead, J.Org.Chem., 34, 2324 (1969); H.O.House, and V.Kramar, <u>J.</u> **Org.Chem., 28, 3362 (1963).**
- 8. D.Shinzer and C.H.Heathcock, <u>Tetrahedron Lett., 22</u>, 1881 (1981); R.L.Da heiser and D.M.Fink, Tetrahedron Lett., 26, 2509 (1985).
- **9. J.A.Miller and G.J.Zweifel, <u>J.Am.Chem.Soc.</u>, 103, 6217 (1981).
.**
- **10. A typical procedure is as follows: Propenoyltrimethylsilane (1) (50 mg,0.39mmol) and Rromotrimethylsilane (60 mg, 0.39mmot) were stirred under N2 in a flame dried flask for 1 h (completion of the reaction was** monitored by GC/MS), then diluted with CH₂Cl₂ (100 μ 1), cooled to -78 C **and treated successively with dimethoxy-C2-chlorophenyljmethane (69 mg,** 0.37 mmol) in 50 μ l CH₂Cl₂ and BF₃.Et₂0 (59.5 mg, 0.37mmol) via a syringe. **The obtained mixture was stirred Ih, then quenched, washed with water and brine. Purification by preparative t.1.c. afforded 96 mg of (59) (74%).**

(Received in UK 3 July 1987)