SYNTHESIS OF POLYFUNCTIONALIZED ACYLSILANES VIA PROPENOYLTRIMETHYLSILANE.

A.Ricci, A.Degl'Innocenti, G.Borselli and G.Reginato

Centro C.N.R. Composti Eterociclici e loro Applicazioni, c/o Dipartimento di Chimica Organica dell'Universita' via G.Capponi 9, I~50121 Firenze, ITALY.

Summary: Propencyltrimethylsilane (1) reacts with silylated nucleophiles to yield the β -functionalised silyl encl ethers of acylsilanes. Further "in situ" reaction of these compounds affords an easy entry into the class of polyfunctionalised acylsilanes.

Silyl enol ethers of acylsilanes are gaining growing interest in the chemical literature¹, and although several methods have been developed for their synthesis², none of them appears suitable for incorporating a functional group. Moreover some β -functionalized acylsilanes have been reported³, but the synthetic method for their preparation is not general.

As a part of our long standing and continuing interest in this field⁴ we wish now to report a novel, mild and high yielding synthesis of functionalised silyl enol ethers of acylsilanes, via the Michael addition of a variety of silylated nucleophiles to a very reactive acylsilane, propenoyltrimethylsilane⁵ (1).

Thus, as a typical example, upon stirring for 1 h PhSSiMe₃ with propenoyltrimethylsilane (1) at room temperature, it is possible to isolate in 98% yield 3-phenylthio-1-trimethylsilyloxy-1-trimethylsilyl propene (2d). The compounds obtained through this procedure are usually pure enough to undergo further reactions. The results are collected in Table 1.

The reaction proceeds in the absence of any solvent, although it is possible to run it in ether or in THF, with slowing of the reaction rate. No catalyst was necessary, probably due to the high positive charge present at the carbon in the β -position.

Silyl enol ethers obtained through this Michael type addition to (1) were 95% pure E isomers, as evidenced by the NMR⁶ spectra of the crude material obtained from the reaction mixtures: this feature turns out to be a very interesting one since stereochemically pure enol derivatives have important applications in stereoselective syntheses of alicyclic molecules bearing multiple asymmetric centers⁷. Interestingly the functionalization of (1) with N₃SiMe₃ affords, to our knowledge, the first example of 1,4-Michael addition of this silylated derivative, thus opening a new and easy access to β -azido ketones.

Nucleophile	Product	Yield ^a %	E:Z ^b	1 _{H NMR(ppm)}
Et ₂ N-S1Me3	EtzN SiMes OSiMes 20	98	95: 5	0.28 (s, 9H), 0.32 (s, 9H), 1.18 (q, 6H) 2.70 (m, 4H), 3.28 (d, 2H), 4.50 (t, 1H).
(MesSi)zNH	Messinh Simes	20 C		
N-Si Mes	Silves 2c DSilves	90	95: 5	0.20 (s, 9H), 0.31 (s, 9H), 4.68 (d, 2H) 5.28 (t, 1H), 7.1 (s, 2H), 7.6 (s, 1H),
PhS-SiMe ₃	PhS SiMes 2d	98	94: 6	0.18 (s, 9H), 0.31 (s, 9H), 3.58 (d, 2H) 5.17 (t, 1H), 7.10–7.25 (s, 5H).
NeS-SiMeg	Mes OSiMes 28	81	95: 5	D.20 (8,9H), 0.31 (8,9H), 2.07 (8,3H) 3.18 (d,2H), 5.18 (t,1H).
(Me521)28	MegSiS SiMeg 2f OSiMeg	95	91: 9	0.18 (s,9H), 0.3 (s,9H), 0.38 (s,9H), 3.10 (d,2H), 5.07 (t,1H),
Br-Si He s	Br SiMes OSiMes 2g	95	95: 5	0.12 (s, 9H), 0.30 (s, 9H), 4.04 (d, 2H), 5.50 (t, 1H).
Ng-SiMeg	Ns Si Mes OSi Mes 2h	98	94: 6	0.15 (s. 9H), 0.27 (s. 9H), 3.90 (d, 2H). 5.58 (t, 1H) .
PPh3/Me3S1C1	PhyP SiMes OSiMes	96	94: 6	0.15 (8, 9H), 0.27 (s, 9H), 4.73 (dd, 2H) 5.62 (m, 1H), 7.55-1.70 (m, 15H),

Table 1. Functionalized Silyl Enol Ethers of Acylsilanes.

^aYields determined on the NMR spectrum of the crude product.^b E:Z ratio determined by NMR on the chemical shifts of the vinylic protons.^CDetermined by GC/MS analysis.

By acidic hydrolysis of these new silylated enol ethers, it is possible to obtain in high yields acylsilanes variously functionalised at the β -position, with great versatility in organic synthesis, since acylsilanes are readily convertible to the corresponding aldehydes⁸ and acids⁹.

A further synthetic potential of compounds (2), stems from their capability to undergo the typical reactions of silyl enol ethers with electrophiles other than H⁺. To exploit this last possibility, preliminary experiments based on a one pot double functionalization of (1) were performed.

As shown by the results in Table 2, the silyl enol ethers of acylsilanes, once generated, react "in situ", in a regiospecific fashion, spontaneously or

Substrate ^a	Е	Product	Yield ^b %	1 _{NMR (ppm)}
-	нŧ	3a	85	0.25 (s, 9H), 1.15 (t, 6H), 2.51 (q, 4H) 2.8 (t, 2H), 3.31 (t, 2H).
28	Br₂	4a	95	0.3 (s, 9H), 1.13 (t, 6H), 2.55 (q, 4H), 3.27 (dd, 1H), 3.5 (dd, 1H), 4.55 (dd, 1H),
2c	нt	32	91	0.2 (s, 9H), 3.18 (t, 2H), 4.3 (t, 2H), 7.1 (s, 2H), 7.5 (s, 1H).
2d	н+	3d	90	0.28 (s, 9H), 3.1 (t, 2H), 3.3 (t, 2H), 7.10-7.25 (m, 5H).
	Brz	4d	95	0.37 (s. 9H), 3.27 (dd, 1H, J = 14Hz, J = 5Hz), 3.65 (dd, 1H, J = 14Hz, J = 10Hz), 4.55 (dd, 1H, J = 10Hz, J = 5Hz), 7.12-7.3 (m, 5H).
	(6)	5d	86	0.28 (s, 9H), 2.85 (m, 1H), 3.05 (m, 1H), 3.55 (s, 3H), 3.56 (m, 1H), 4.8 (d, 1H), 7.3-7.9 (m, 4H).
28	H+	3e	70	0.29 (s, 9H), 2.07 (s, 3H), 2.68 (t, 2H),2.91 (t, 2H).
21	н+	3f	76	0.2 (s, 9H), 0.3 (s, 9H), 3.27 (t, 2H), 3.45 (t, 2H).
29	н+	3g	92	0.20 (s, 9H), 3.14 (t, 2H), 3.50 (t, 2H).
	(6)	59	82	0.15 (s, 9H), 2.85-3.3 (m, 2H), 3.26 (s, 3H), 3.9-4.15 (m, 1H), 5.8 (d, 1H), 7.20-7.45, 7.70-7.90 (m, 4H).
2h	н+	3h	95	0.31 (s, 9H), 2.93 (t, 2H), 3.53 (t, 2H).
	Brz	4h	88	0.35 (s, 9H), 3.36 (dd, 1H, J = 12.7Hz, J = 6Hz), 3.75 (dd, 1H, J = 12.7Hz J = 6.8Hz), 4.46 (dd, H, J = 6.8Hz, J = 6.0Hz).
	(6)	5h	72	0.25 (s. 9H), 2.90-3.15 (m, 2H), 3.32 (s, 3H), 3.65 (m, 1H), 4.75 (d, 1H) 7.20-7.75 (m, 4H).
21	нţ	31	62	0.10 (s.9H), 3.25 (dt, J ³ _{P-H} =20Hz, J=6Hz), 4.05 (m.2H, J ² _{P-H} =13Hz, J=6Hz).

Table 2. Reactions of silyl enol ethers of acylsilanes toward Electrophiles.

^aAll the reactions were performed "in situ". ^bDetermined by GC/MS analysis or by NMR of the crude material.

under the catalytic effect of BF_3 . Et₂0 with some representative electrophiles, leading to acysilanes with different functional groups at the α and β -positions¹⁰.

Due to its inherent interest and wide applications in synthesis, this reactional behaviour makes compound (1) a synthetic equivalent of the poli-

functional synthon (6). This is now being actively investigated in our laboratories.

REFERENCES AND NOTES

- 1. T.Sato, M.Arai and I.Kuwajima, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 5827 (1977); T.Sato, T.Abe and I.Kuwajima, Tetrahedron Lett., <u>19</u>,259 (1978).
- I.Kuwajima, M.Kato and T.Sato, J.Am.Chem.Soc., 99, 4181 (1977); I.Kuwajima, M.Kato and T.Sato, J.Chem.Soc. Chem. Commun., 478 (1978); S.Murai, I.Ryu, J.Iriguchi and N.Sinoda, J.Am.Chem.Soc., 106, 2440 (1984).
- 3. D.I.Gasking and G.H.Whitham, J.Chem.Soc. Perkin I, 409, (1985).
- A.Degl'Innocenti, S.Pike, D.R.M.Walton, G.Seconi, A.Ricci and M.Fiorenza, J.Chem.Soc. Chem.Commun., 1201 (1980); A.Ricci, A.Degl'Innocenti, S.Chimichi, M.Fiorenza, G.Rossini and H.J.Bestmann, J.Org.Chem., 50, 130 (1985); A.Degl'Innocenti, A.Ricci,G.Seconi, G.Pirazzini and D.R.M.Walton, <u>Tetrahedron Lett.</u>, 21, 3927 (1980); A.Ricci, M.Fiorenza, A.Degl'Innocenti, G.Seconi, P.Dembech, K.Witzgall and H.J.Bestmann, <u>Angew. Chem. Int.</u> <u>Ed. Engl.</u>, 24, 1068 (1985); A.Ricci, A.Degl'Innocenti, A.Mordini, G.Reginato and V.Colotta, <u>Gazz. Chim. It.</u>, in press.
- 5. H.J.Reich, M.J.Kelly, R.E.Olson and R.C.Holtan, <u>Tetrahedron</u>, <u>39</u>, 949 (1983).
- 6. C.H.Heathcock, C.T.Buse, W.A.Kleschick, M.C.Pirrung, J.E.Sohn and J.Lampe, <u>J.Org.Chem.</u>, <u>45</u>, 1066 (1980); S.Masamune, W.Choy, F.A.Kerdesky and B.Imperiali, <u>J.Am.Chem.Soc.</u>, <u>103</u>, 1566 (1981); D.A.Evans, J.Bartroli, T.L.Shih, <u>J.Am.Chem.Soc.</u>, <u>103</u>, 2127 (1981).
- 7. C.H.Heathcock, C.T.Buse, W.A.Kleschick, M.C.Pirrung, J.E.Sohn and J.Lampe, <u>J.Org.Chem.</u>, <u>45</u>, 1066 (1980); H.O.House, L.J.Czuba, M.Gall and M.D. Olmstead, <u>J.Org.Chem.</u>, <u>34</u>, 2324 (1969); H.O.House, and V.Kramar, <u>J.</u> <u>Org.Chem.</u>, <u>28</u>, 3362 (1963).
- D.Shinzer and C.H.Heathcock, <u>Tetrahedron Lett.</u>, <u>22</u>, 1881 (1981); R.L.Danheiser and D.M.Fink, <u>Tetrahedron Lett.</u>, <u>26</u>, 2509 (1985).
- 9. J.A.Miller and G.J.Zweifel, J.Am.Chem.Soc., 103, 6217 (1981).
- 10. A typical procedure is as follows: Propenoyltrimethylsilane (1) (50 mg,0.39mmol) and Bromotrimethylsilane (60 mg, 0.39mmol) were stirred under N₂ in a flame dried flask for 1 h (completion of the reaction was monitored by GC/MS), then diluted with CH_2Cl_2 (100 μ l), cooled to -78 C and treated successively with dimethoxy-(2-chlorophenyl)methane (69 mg, 0.37mmol) in 50 μ l CH_2Cl_2 and BF_3 .Et₂0 (59.5 mg, 0.37mmol) via a syringe. The obtained mixture was stirred 1h, then quenched, washed with water and brine. Purification by preparative t.l.c. afforded 96 mg of (5g) (74%).

(Received in UK 3 July 1987)